Headlines News :
Home » » Momen inersia

Momen inersia

Written By Figur Pasha on Monday, June 14, 2010 | 12:07 PM

بِسْــــــــــــــــمِ اﷲِالرَّحْمَنِ الرَّحِيم

 Momen inersia (Satuan SI : kg m2)adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.


Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.

Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:
I = \int r^2 \,dm\,\!
di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.

Analisis

Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh
I \triangleq  m r^2\,\!
Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:
I \triangleq  \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!
Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:
I \triangleq   \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!
di mana
V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.

Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:
 I = k\cdot M\cdot {R}^2 \,\!
di mana
M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.
Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:
  • k = 1, cincin tipis atau silinder tipis di sekeliling pusat
  • k = 2/5, bola pejal di sekitar pusat
  • k = 1/2, silinder atau piringan pejal di sekitar pusat.



Source : http://wikipedia.org
Share this article :

0 comments:

Speak up your mind

Tell us what you're thinking... !

Enter your email address:

Delivered by FeedBurner

Random Post

 
Support : SMP N 1 Pecangaan | SMA N 1 Pecangaan | Universitas Islam Negeri Walisongo
Proudly powered by Blogger
Copyright © 2013. Islamic Centre - All Rights Reserved
Template Design by Creating Website Published by Mas Template