Garis Arus dan Tabung Alir
Sebelum melangkah lebih jauh, terlebih dahulu kita pahami konsep Garis Alir, Garis Arus dan Tabung Alir. Konsep ini penting, karena akan membantu dirimu untuk memahami persamaan kontinuitas.
Garis Arus (stream line)
Selain Garis Alir, ada juga namanya Garis Arus. Untuk memudahkan pemahamanmu, gurumuda menggunakan gambar. Perhatikan gambar di bawah. Garis yang berwarna biru merupakan Garis Arus.

Tabung Alir (flow tube)
Istilah makin aneh saja. Ada Garis lah, ada tabung lah… hehe…. Tabung Alir tuh maksudnya apa ? silahkan perhatikan gambar di bawah…

Pada dasarnya kita bisa menggambarkan setiap garis arus melalui tiap-tiap titik dalam aliran fluida tersebut. Jika kita menggangap aliran fluida tunak, sejumlah garis arus yang melewati sudut tertentu pada luas permukaan imajiner (luas permukaan khayalan) membentuk suatu tabung aliran. Tidak ada partikel fluida yang saling berpotongan tapi selalu sejajar dan tabung aliran tersebut akan menyerupai sebuah pipa yang bentuknya selalu sama. Fluida yang masuk pada salah satu ujung tabung akan keluardari tabung tersebut di ujung lainnya.
DebitDalam kehidupan sehari-hari orang sering menggunakan istilah “Debit”. Btw, Debit itu sebenarnya apa ?
Debit itu menyatakan volume suatu fluida yang mengalir melalui penampang tertentu dalam selang waktu tertentu. Secara matematis, bisa dinyatakan sebagai berikut :



Dengan demikian, ketika fluida mengalir melalui suatu pipa yang memiliki luas penampang dan panjang tertentu selama selang waktu tertentu, maka besarnyadebit fluida (Q) tersebut sama dengan luas permukaan penampang (A) dikalikan dengan laju aliran fluida (v). Dipahami perlahan-lahan ya… Jika bingung berlanjut, silahkan hubungi dokter terdekat

Persamaan Kontinutitas
Penjelasan sebelumnya yang bertele-tele tersebut hanya mau mengantar dirimu untuk mempelajari persamaan kontinuitas, inti dari tulisan ini. Sekarang, mari kita tinjau aliran fluida pada sebuah pipa yang mempunyai diameter berbeda, seperti tampak pada gambar di bawah.

Keterangan gambar : A1 = luas penampang bagian pipa yang berdiameter besar, A2 = luas penampang bagian pipa yang berdiameter kecil, v1 = laju aliran fluida pada bagian pipa yang berdiameter besar, v2 = laju aliran fluida pada bagian pipa yang berdiameter kecil, L = jarak tempuh fluida.
Pada pengantar fluida dinamis, gurumuda telah menjelaskan bahwa dalam fluida dinamis, kita membahas aliran fluida yang tak termampatkan, tak kental, tak berolak dan tunak. Sebaiknya dibaca terlebih dahulu penjelasan sebelumnya, biar lebih nyambung. Lanjut ya…
Pada aliran tunak, kecepatan aliran partikel fluida di suatu titik sama dengan kecepatan aliran partikel fluida lain yang melewati titik itu. Aliran fluida juga tidak saling berpotongan (garis arusnya sejajar). Karenanya massa fluida yang masuk ke salah satu ujung pipa harus sama dengan massa fluida yang keluar di ujung lainnya. Jika fluida memiliki massa tertentu masuk pada pipa yang diameternyabesar , maka fluida tersebut akan keluar pada pipa yang diameternya kecil dengan massa yang tetap. Waduh, bingung-kah ? dipahami perlahan-lahan ya…
Sekarang, mari kita perhatikan gambar pipa di atas. Kita tinjau bagian pipa yang diameternya besar dan bagian pipa yang diameternya kecil.
Selama selang waktu tertentu, sejumlah fluida mengalir melalui bagian pipa yang diameternya besar (A1) sejauh L1 (L1 = v1t). Volume fluida yang mengalir adalah V1 = A1L1 = A1v1t. Nah, Selama selang waktu yang sama, sejumlah fluida yang lain mengalir melalui bagian pipa yang diameternya kecil (A2) sejauh L2 (L2 = v2t). Volume fluida yang mengalir adalah V2 = A2L2 = A2v2t. (sambil lihat gambar di atas).
Persamaan Kontinuitas untuk Fluida Tak-termampatkan (incompressible)
Pertama-tama mari kita tinjau kasus untuk Fluida Tak-termampatkan. Pada fluida tak-termampatkan (incompressible), kerapatan alias massa jenis fluida tersebut selalu sama di setiap titik yang dilaluinya.
Massa fluida yang mengalir dalam pipa yang memiliki luas penampang A1 (diameter pipa yang besar) selama selang waktu tertentu adalah :


Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida yang keluar, maka :

Catatan : massa jenis fluida dan selang waktu sama sehingga dilenyapkan.
Jadi, pada fluida tak-termampatkan, berlaku persamaan kontinuitas :
A1v1 = A2v2 — Persamaan 1
Di mana A1 = luas penampang 1, A2 = luas penampang 2, v1 = laju aliran fluida pada penampang 1, v2 = laju aliran fluida pada penampang 2. Av adalah laju aliran volume V/t alias debit (sudah gurumuda jelaskan di atas)
Persamaan 1 menunjukkan bahwa laju aliran volume alias debit selalu sama pada setiap titik sepanjang pipa/tabung aliran. Ketika penampang pipa mengecil, maka laju aliran fluida meningkat (fluida kebut2an), sebaliknya ketika penampang pipa menjadibesar, laju aliran fluida menjadi kecil. Agar dirimu semakin paham, silahkan obok-obok persamaan 1 dengan memasukan angka tertentu.




Persamaan Kontinuitas untuk Fluida Termampatkan (compressible)
Untuk kasus fluida yang termampatkan alias compressible, massa jenis fluida tidak selalu sama. Dengan kata lain, massa jenis fluida berubah ketika dimampatkan. Kalau pada fluida Tak-termampatkan massa jenis fluida tersebut kita lenyapkan dari persamaan, maka pada kasus ini massa jenis fluida tetap disertakan. Dengan berpedoman pada persamaan yang telah diturunkan sebelumnya, mari kita turunkan persamaan untuk fluida termampatkan.
Mengingat bahwa dalam aliran tunak, massa fluida yang masuk sama dengan massa fluida yang keluar, maka :

Ini adalah persamaan untuk kasus fluida termampatkan. Bedanya hanya terletak pada massa jenis fluida. Apabila fluida termampatkan, maka massa jenisnya berubah. Sebaliknya, apabila fluida tak termampatkan, massa jenisnya selalu sama sehingga bisa kita lenyapkan. Untuk lebih memahami hubungan antara massa jenis dan fluida termampatkan/tak-termampatkan, silahkan pelajari pembahasan mengenai Tekanan Pada Fluida (Fluida Statis).
Source : http://gurumuda.com
0 comments:
Speak up your mind
Tell us what you're thinking... !