Pages

Saturday, February 14, 2009

Trigonometri

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b

tg(a - b ) = tg a - tg b
1 + tg2a


SUDUT RANGKAP

sin 2
a = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a = 2 tg 2a
1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a = ½ (1 - cos 2a)

Secara umum :


sin n
a = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a = 2 tg ½na
1 - tg2 ½n
a

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN
® PERKALIAN

sin
a + sin b = 2 sin a + b cos a - b
2 2
sin
a - sin b = 2 cos a + b sin a - b
2 2
cos
a + cos b = 2 cos a + b cos a - b
2 2
cos
a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN
® PENJUMLAHAN

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)


a cos x + b sin x = K cos (x-
a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut


I
II
III
IV
a
+
-
-
+
b
+
+
-
-

keterangan :
a = koefisien cos x
b = koefisien sin x


PERSAMAAN
I. sin x = sin
a Þ x1 = a + n.360°
x2 = (180° -
a) + n.360°


cos x = cos a Þ x = ± a + n.360°

tg x = tg a Þ x = a + n.180° (n = bilangan bulat)


II. a cos x + b sin x = c
a cos x + b sin x = C
K cos (x-
a) = C
cos (x-
a) = C/K
syarat persamaan ini dapat diselesaikan
-1
£ C/K £ 1 atau K² ³ (bila K dalam bentuk akar)

misalkan C/K = cos
b
cos (x -
a) = cos b
(x -
a) = ± b + n.360° ® x = (a ± b) + n.360°

1 comment: