Pages

Thursday, December 18, 2008

Logaritma

-Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.

-Rumus dasar logaritma:

bc= a ditulis sebagai blog a = c (b disebut basis)

Beberapa orang menuliskan blog a = c sebagai logba = c

-Rumus

* xlog x = 1
* x^nlog xm = m/n
* blog x + blog y = blog (x.y)
* blog x - blog y = blog (x:y)
* (alog b)(blog c) = alog c
* b log xn = n.blog x
* b log x = klog x : klog b

-Kegunaan logaritma

Logaritma sering digunakan untuk memecahkan persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn = x, b dapat dicari dengan pengakaran, n dengan logaritma, dan x dengan fungsi eksponensial.

-Penghitungan yang lebih mudah

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::
Penghitungan dengan angka Penghitungan dengan eksponen Identitas Logaritma
\!\, a b \!\, A + B \!\, \log(a b) = \log(a) + \log(b)
\!\frac{a}{b} \!\, A - B \!\, \log(\frac{a}{b}) = \log(a) - \log(b)
\!\, a ^ b \!\, A b \!\, \log(a ^ b) = b \log(a)
\!\, \sqrt{a} \!\, \frac{A}{b} \!\, \log(\sqrt{a}) = \frac{\log(a)}{b}

Sifat-sifat diatas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.

Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut

No comments:

Post a Comment